THE PATH TOWARDS A SUSTAINABLE ACCESS TO ENERGY FOR ALL IN AFRICA

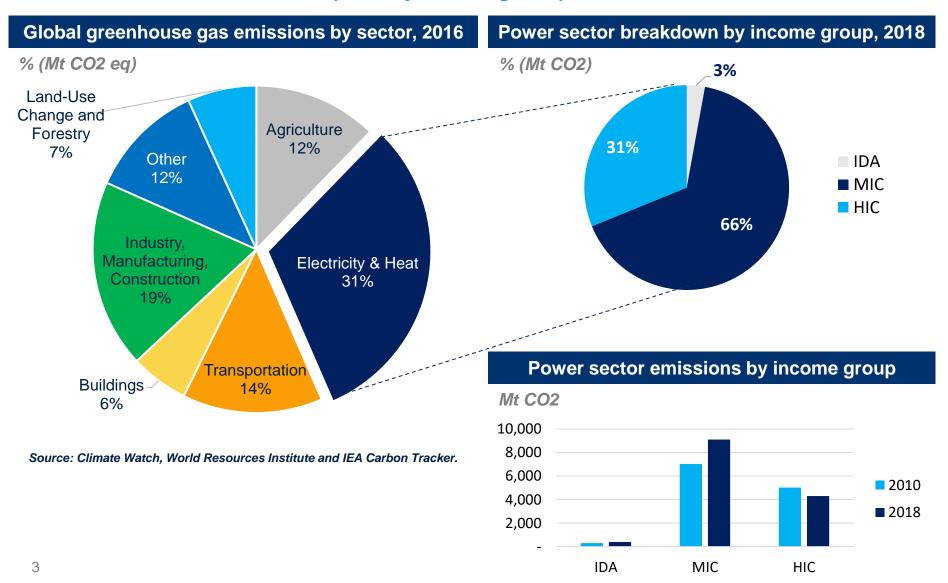
BERTRAND DE LA BORDE

GLOBAL HEAD, ENERGY AND MINING, IFC

Africa faces unique challenges and requires smart solutions to achieve universal access and improve service quality

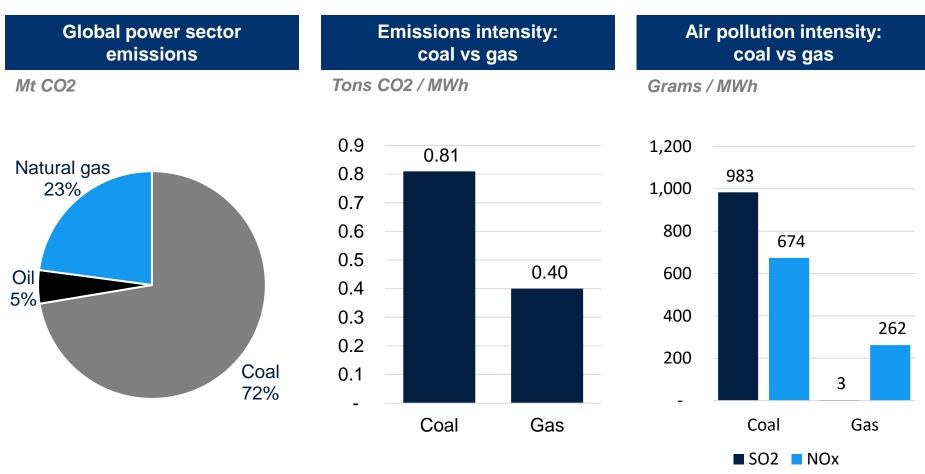
- Half of Sub-Saharan African countries have insufficient power supply (total capacity ~110 GW)
- Very high electricity costs due to heavy reliance on diesel/HFO, tariffs below cost-recovery, high budgetary costs for governments
- Limited consumer affordability, with electricity bill >10% of income of poorest households, unaffordable connection fees
- Vast geography and low population density, leading to high grid extension costs in rural areas
- Very low transmission & distribution network coverage, unreliable grids and high losses (20% or double the international norm)
- Rapid population growth pulling down access rates even as connections increase, and rapid urbanization make energy poverty to widen

Reform to address sector policy and utility performance issues with a focus on:


- → Enhanced governance
- → Improved planning & regulatory capacity
- → Stronger financial standing including through a reduction in debt and arrears
- → Better technical performance and collection rate of utilities

Increase generation capacity to meet demand in a financially and environmentally sustainable way

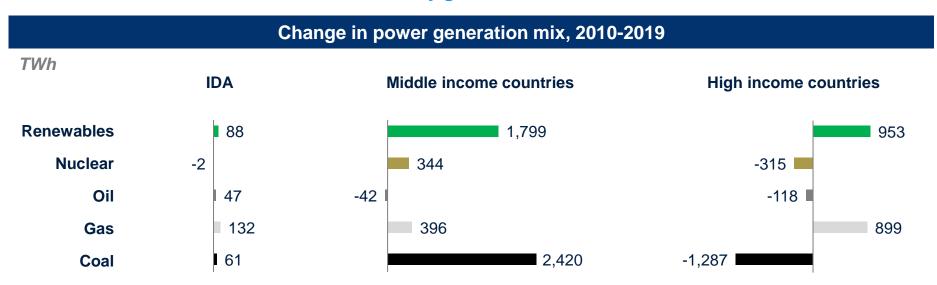
Expand connectivity through grid development, and where relevant, off-grid solutions


Where are greenhouse gas emissions coming from?

IDA countries represent just 3% of global power CO2 emissions

Coal-fired generation is the key polluter in the power sector

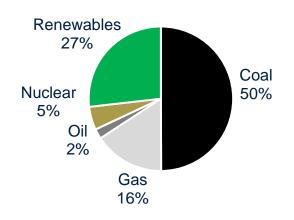
Coal-fired generation represents 72% of power emissions and emits ~2x more CO2 per kWh than gas



Note: End-consumption emissions intensity based on CO2 intensity of 340 kg/MWh for coal and 200 kg/MWh for gas and assumed efficiency of 42% for coal and 50% for gas-fired plant. Air pollution data calculated based on 2019 US coal and gas plant data. SO2 = sulfur dioxide, NOx = nitrogen oxides.

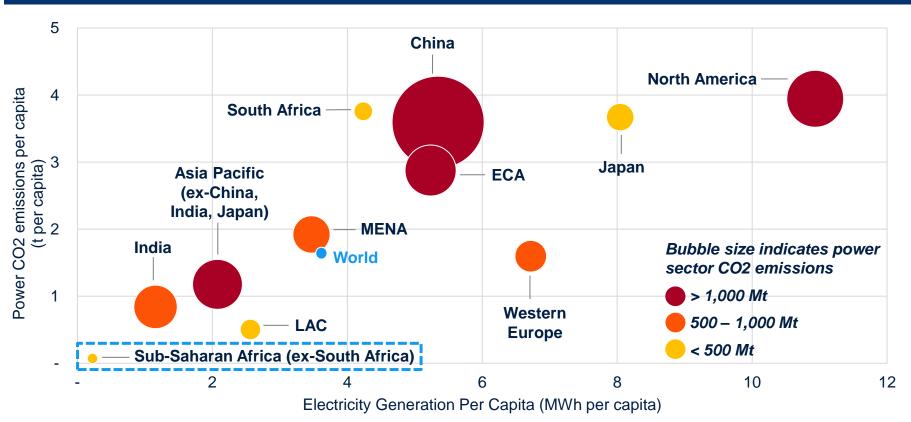
Source: IEA World Energy Outlook 2020, US EPA.

Evolution of the electricity mix by income group


In IDA countries, the increase in electricity generation over the last decade has been minimal

Global change in power generation mix, 2010-2019

	TWh	Share of total change
Renewables	2,840	53%
Nuclear	27	1%
Oil	(114)	(2)%
Gas	1,427	27%
Coal	1,190	22%
Total	5,370	

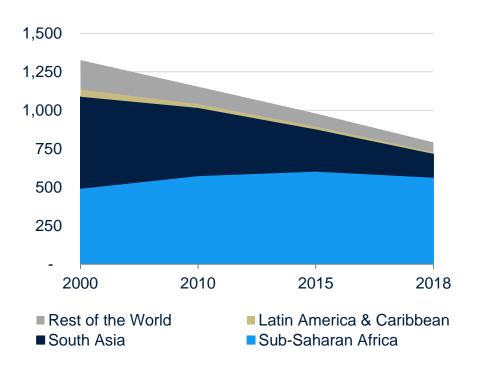

MICs generation mix, 2019

Electricity generation and CO2 emissions

Sub-Saharan Africa (excl. South Africa) accounts for 0.5% of global CO2 emissions from the power sector

Power sector CO2 emissions in relation to population size

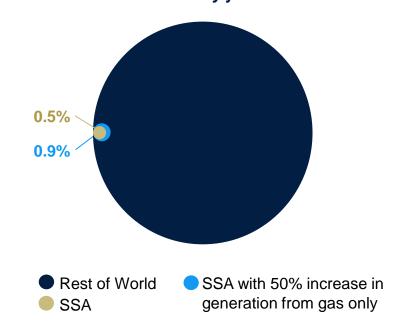
Source: IEA World Energy Outlook 2020, IEA Carbon and Energy Tracker 2020.


One solution does not fit all – different regions face different challenges

			Asia	ECA & MENA	LAC	Sub-Saharan Africa (excl. South Africa)
	Size of the CO2 Emiss			•	•	
1	Managing Energy effi reducing lo reinforcing	ciency, sses and			•	
2	Energy access			\bigcirc	\bigcirc	
3	Phasing o	ut coal				
	Boosting	Enabling technology for RE				
4	RE	Bringing innovation to EMs				
-	Legend:	large contributor	/highly relevant	medium contributor	/relevant 🕒 min	or contributor / less relevant

Energy access remains the priority in Africa: leapfrogging will not get us there and the effect on power sector emissions will be marginal

Evolution of access to electricity by region


of people without access to electricity (millions)

Note: Sub-Saharan Africa refers to SSA excluding South Africa. Source: World Development Indicators, IEA World Energy Outlook 2020.

CO2 emissions from the power sector in SSA

Increasing SSA's 2019 electricity generation by 50% using only gas would increase global CO2 emissions by just 0.4%

Hydropower and gas potential in Sub-Saharan Africa

Top 10 resource-rich countries by technology

Gas	EJ	Hydro	PJ/year	
1 Mozambique	333	1 DR Congo	374	
2 Nigeria	217	2 Ethiopia	353	
3 Tanzania	92	3 Cameroon	211	
4 Angola	49	4 Angola	129	
5 Senegal	31	5 Mozambique	105	
6 South Africa	29	6 Nigeria	85	
7 Gabon	28	7 Gabon	66	
8 Côte d'Ivoire	13	8 Republic of the Congo	43	Potential of hydro- power generation
9 Cameroon	12	9 Guinea	42	Potential for gas-
10 Madagascar	12	10 Zambia	40	fired generation

Source: Shell – Global Energy Resource Database (2020), adjusted for Senegal (Resources of 30Tcf vs. the 10 Tcf reported by Shell).

Note: Hydropower data refers to production potential per year while gas data refers to expected remaining potential. Hydropower potential in peta-joule per year (PJ/year), gas potential in exa-joule (EJ). 1 exa-joule = 1,000 peta-joule.

Key messages

- In Sub-Saharan Africa, ensuring access to affordable, reliable, sustainable and modern energy for all is essential
- Electrification expansion will require blending different least-cost business models through grid development and off-grid solutions based on RE, where relevant
- Clean energy transition will primarily rely on RE, with hydropower and flexible gas generation providing affordable firm capacity and ability to integrate more variable RE
- Improving the transmission and distribution network is critical to ensure energy access quality, with battery storage progressively having a role to play as costs decrease
- Reforms to address sector policy and utility performance issues are fundamental to achieve these goals